Non-bipartite pairs of 33-connected graphs are highly Ramsey-infinite

نویسنده

  • Mark H. Siggers
چکیده

A pair of graphs (Hb,Hr) is highly Ramsey-infinite if there is some constant c such that for large enough n there are at least 2cn 2 non-isomorphic graphs on n or fewer vertices that are minimal with respect to the property that when their edges are coloured blue or red, there is necessarily a blue copy of Hb or a red copy of Hr. We show that a pair of 3-connected graphs is highly Ramsey-infinite if and only if at least one of the graphs in non-bipartite. Further we show that the pair (Hb,Hr) is highly Ramsey infinite for Hr an odd cycle of girth ` and Hb any graph with no induced cycle of length ` or longer. In showing the above results, we continue the theory of gadgets called senders and determiners that has been developed over many earlier papers on Ramsey-infinite graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ramsey and Turán-type problems for non-crossing subgraphs of bipartite geometric graphs

Geometric versions of Ramsey-type and Turán-type problems are studied in a special but natural representation of bipartite graphs and similar questions are asked for general representations. A bipartite geometric graphG(m,n) = [A,B] is simple if the vertex classes A,B of G(m,n) are represented in R2 as A = {(1, 0), (2, 0), . . . , (m, 0)}, B = {(1, 1), (2, 1), . . . , (n, 1)} and the edge ab is...

متن کامل

Minimal Ordered Ramsey Graphs

An ordered graph is a graph equipped with a linear ordering of its vertex set. A pair of ordered graphs is Ramsey finite if it has only finitely many minimal ordered Ramsey graphs and Ramsey infinite otherwise. Here an ordered graph F is an ordered Ramsey graph of a pair (H,H ′) of ordered graphs if for any coloring of the edges of F in colors red and blue there is either a copy of H with all e...

متن کامل

Zarankiewicz Numbers and Bipartite Ramsey Numbers

The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...

متن کامل

Ramsey Properties of Countably Infinite Partial Orderings

A partial ordering P is chain-Ramsey if, for every natural number n and every coloring of the n-element chains from P in finitely many colors, there is a monochromatic subordering Q isomorphic to P. Chain-Ramsey partial orderings stratify naturally into levels. We show that a countably infinite partial ordering with finite levels is chain-Ramsey if and only if it is biembeddable with one of a c...

متن کامل

Countable connected-homogeneous graphs

A graph is connected-homogeneous if any isomorphism between finite connected induced subgraphs extends to an automorphism of the graph. In this paper we classify the countably infinite connectedhomogeneous graphs. We prove that if Γ is connected countably infinite and connected-homogeneous then Γ is isomorphic to one of: Lachlan and Woodrow’s ultrahomogeneous graphs; the generic bipartite graph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2014